Blended barycentric coordinates
نویسندگان
چکیده
Generalized barycentric coordinates are widely used to represent a point inside a polygon as an affine combination of the polygon’s vertices, and it is desirable to have coordinates that are non-negative, smooth, and locally supported. Unfortunately, the existing coordinate functions that satisfy all these properties do not have a simple analytic expression, making them expensive to evaluate and difficult to differentiate. In this paper, we present a new closed-form construction of generalized barycentric coordinates, which are non-negative, smooth, and locally supported. Our construction is based on the idea of blending mean value coordinates over the triangles of the constrained Delaunay triangulation of the input polygon, which needs to be computed in a preprocessing step. We experimentally show that our construction compares favourably with other generalized barycentric coordinates, both in terms of quality and computational cost.
منابع مشابه
Higher Order Barycentric Coordinates
In recent years, a wide range of generalized barycentric coordinates has been suggested. However, all of them lack control over derivatives. We show how the notion of barycentric coordinates can be extended to specify derivatives at control points. This is also known as Hermite interpolation. We introduce a method to modify existing barycentric coordinates to higher order barycentric coordinate...
متن کاملBarycentric coordinates for convex sets
In this paper we provide an extension of barycentric coordinates from simplices to arbitrary convex sets. Barycentric coordinates over convex 2D polygons have found numerous applications in various fields as it allows smooth interpolation of data located on vertices. However, no explicit formulation valid for arbitrary convex polytopes has been proposed to extend this interpolation in higher di...
متن کامل2D Simulation and Mapping using the Cauchy-Green Complex Barycentric Coordinates
2D Simulation and Mapping using the Cauchy-Green Complex Barycentric Coordinates Conformal maps are especially useful in geometry processing for computing shape preserving deformations, image warping and manipulating harmonic functions. The Cauchy-Green coordinates are complex-valued barycentric coordinates, which can be used to parameterize a space of conformal maps from a planar domain bounde...
متن کاملA Complex View of Barycentric Mappings
Barycentric coordinates are very popular for interpolating data values on polyhedral domains. It has been recently shown that expressing them as complex functions has various advantages when interpolating two-dimensional data in the plane, and in particular for holomorphic maps. We extend and generalize these results by investigating the complex representation of real-valued barycentric coordin...
متن کاملGeneralized Barycentric Coordinates on Irregular Polygons
In this paper we present an easy computation of a generalized form of barycentric coordinates for irregular, convex n-sided polygons. Triangular barycentric coordinates have had many classical applications in computer graphics, from texture mapping to ray-tracing. Our new equations preserve many of the familiar properties of the triangular barycentric coordinates with an equally simple calculat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Aided Geometric Design
دوره 52 شماره
صفحات -
تاریخ انتشار 2017